
Lecture Notes in Computer Science 1

Coordination Technologies for Business Strategy Support:
a case study in StockTrading

G.Koutsoukos1, T. Kotridis2, L.Andrade1,3, J.L.Fiadeiro3,5, J.Gouveia1 and
M.Wermelinger3,4

1 OBLOG Software S.A., Alameda António Sérgio 7, 2795 Linda-a-Velha, Portugal
{gkoutsoukos,jgouveia,landrade}@oblog.pt

2 Accenture, London, UK
theofilos.kotridis@accenture.com

3 ATX Software SA, Alameda António Sérgio 7, 2795 Linda-a-Velha, Portugal
4 Dep. de Informática, FCT, Univ. Nova de Lisboa, 2825-114 Caparica, Portugal

mw@di.fct.unl.pt
5 Dep. de Informática, Fac. Ciências, Univ. Lisboa, Campo Grande, 1700 Lisboa, Portugal

jose@fiadeiro.org

Abstract. In today’s global and highly competitive business environments,
organizations are replying to the question of whether technology is forming
business or vice-versa by integrating their business and IT strategies, thus using
technology to do business. As a result, information systems are at the core of
the competitive edge of every business organization, which puts an increasing
pressure for endowing them with the levels of flexibility and agility that are
required to support changes of business strategies and operate in what have
become highly volatile business domains. In this paper, we argue in favor of
the adoption of “software strategic libraries” based on the “coordination
technologies” that we have been developing, in order to support “business
reactive” software systems. We support our view by presenting examples from
the highly volatile, and extremely competitive, stock-trading business domain.

1 Introduction

Three years ago, Hammer and Champey [10] argued that the progression of events
in the New Economy follows the following pattern: “customer takes control,
competition intensifies and change becomes constant. There is an urgent need for
transformation”. Today, “transformation”, both by reengineering business processes
and by making innovative use of technological advances to do business, has become a
critical success factor that every organization is striving to achieve. Because, more
and more, business is driven through software solutions, organizations need
information systems that are very adaptive to changes, even ones performed directly
by customers, and easily reconfigurable, often in run-time. Through the advent of the
Internet and Wireless Applications, the New Economy is only fuelling this need even
further, namely in the context of e-commerce: “… the ability to change is now more
important than the ability to create e-commerce systems in the first place. Change



Lecture Notes in Computer Science 2

becomes a first-class design goal and requires business and technology architecture
whose components can be added, modified, replaced and reconfigured” [6].

Unfortunately, while various disciplines for Business Change, namely Business
Process Reengineering [10], have been proposed and put in practice over the previous
years, there is still a lack of systematic and scalable solutions that can address
software evolution in general and in the face of changes in the business domain in
particular. As argued in some of our recent papers [1, 2, 3], OO languages and the
technologies associated with component-based frameworks have fallen short of
redressing this situation, which may explain why software teams are still struggling to
compete with the fast business and technology evolution and, as shown by numerous
scientific studies on large-scale software systems, more than 80% of the total cost of
software development is still devoted to software maintenance. The main reason is
that the support that OO techniques such as inheritance and clientship offer for system
construction cannot be extended directly to system evolution: they are too “static” and
“white-box” when it comes to change. On the other hand, design patterns offer
solutions that are too low level to be able to support an evolution process that takes
place at the much higher level of abstraction in which business strategies and rules are
(re)defined: they are useful for providing the design infrastructure that will support the
required levels of adaptability, but they cannot be used for modeling and controlling
the evolution process by themselves.

In this paper we show how a new semantic primitive – coordination contract – that
we presented in [2] as an extension to OO modeling languages, together with the
design patterns that support its implementation over component-based platforms [4,
9], can be used in support for a new approach to Business Modeling based on the
definition of “software strategic libraries” and (re)configuration mechanisms that will
deliver “business reactive” information systems. We present our case on the basis of
some simple, but real-life examples from the Stock-Trading industry – an industry
characterised by its high volatility, in more than one sense, or, in the words of an
unsuspected source, the place in which “the bloodiest financial services battle on the
Internet will be” [7].

The remainder of this paper is organized as follows: Section 2 expands on these
introductory remarks and discusses the ways in which coordination technologies based
on contracts can improve the way strategic business solutions can be supported.
Section 3 gives an overview of the basic concepts of coordination contracts. Section 4
presents a contract-based architecture of a Stock-Trading subsystem in order to
illustrate how contracts can be applied in order to build systems that dynamically
support different business strategies. Concluding remarks and an outline of on-going
and future work round up the paper.

2 Coordination in Stock Trading

The Stock-Trading Business domain in general, and stock trading systems in
particular, is very complex and very volatile. They involve a number of different
people, even possibly different organizations, equipment, material resources and



Lecture Notes in Computer Science 3

business procedures. Building stock-trading systems normally involves strategic
(business), social (human resources), and technological decisions. In this paper, we
will try to show that a new technology is being made available that can lead to a new
way in which this complexity can be tackled so that information systems can, indeed,
be regarded as facilitators in the deployment of Business Strategies, i.e., as part of the
solutions that organizations can rely upon, and not of the problems that they have to
face, when it comes to competing in very dynamic environments. In order to do so,
we consider a stock trading process as an example and focus on the variety of
accounts and types of trading that are usually offered to a client.

Coordination contracts are the semantic primitives that are at the core of the
“Coordination Technologies” that we have been developing for supporting
Information System Evolution in such turbulent environments [1]. These technologies
are based on the separation between what in systems is concerned with the
computations that are responsible for the functionality of the services that they offer
and the mechanisms that coordinate the way components interact, a paradigm that has
been developed in the context of so-called Coordination Languages and Models [8].
The rationale of the application of coordination technologies to Business Modeling is
in the realization that, in highly volatile business domains, one can usually distinguish
between two different kinds of “entities” as far as the evolution of the domain is
concerned. On the one hand, there are classes of entities that correspond to entities
that are relatively “stable” in the sense that they capture core concepts of the business
domain and, therefore, do not change very frequently or for which the organization
accepts that any change may require a more global impact. On the other hand, there
are entities that need to keep changing in order for the system to reflect the dynamics
of the application domain, typically capturing the evolution of the business rules under
which the organization is operating. These require a layer of coordination to be
superimposed over the functionalities provided by the stable entities so that the global
behavior that is expected from the system can emerge, at each state, from the
computations performed locally in components and the interconnections that this layer
of coordination puts in place among them. These coordination aspects need to be
made available explicitly in system models so that they can be changed, as a result of
modifications occurring at the level of requirements, without affecting the components
that ensure the functionalities of the basic services of the system. The purpose of
coordination contracts is to provide mechanisms for that layer of coordination to be
modeled and evolved in a compositional way.

For instance, accounts and types of trading are highly volatile business assets that
determine the competitive edge of a stock trading organization. Therefore, the
information systems that support Stock Trading must be structured in a way that
changes at the level of these aspects can be easily accommodated, even at run time, as
driven through the Internet, with minimum cost and impact on the services already
implemented. As an example, consider the account types that investors in stock
trading are offered in order to perform trading. Most of the stock-trading firms today
offer Traditional Accounts, Margin Accounts, Flexible Accounts, Discounter
Accounts, Upper or Low Quantity Limit Accounts, among others. For each of them,
the trading company specifies different business rules that regulate the specific forms
of trading that they support. For instance, a Margin Account allows the customer to



Lecture Notes in Computer Science 4

perform stock trading by borrowing money from the firm on short sales. This allows
the trader to increase buying power for a period of time with the obligation that there
is enough cash in the account, for instance a minimum balance of an agreed amount,
say 60000 currency units. When trading is performed using a margin account, an
order can be committed only if the balance of the account plus the amount awarded by
the firm (MarginLimit) is greater than, or equal to, the price of the stocks required
plus the minimum balance. However, such requirements, which are also specified for
all the other types of accounts, can change according to different market situations.

Clearly, the frequent and unpredictable evolution of account types, with types
added, changed, or removed according to market rules, as well as the modifications of
the legal rules that regulate stock trading based on such accounts, makes evolution a
critical concern when designing systems that have to support services such as these. It
is only natural that, given the promotion that they have received in the recent past,
companies seek solutions for this problem in OO technology. However, whereas OO
techniques such as Inheritance and Clientship have proved to be adequate for
constructing business information systems, their support for the evolutionary aspects
is not so straightforward.

On the one hand, inheritance as a means of modeling new situations is not
“dynamic”. In other words, if a component needs to be modified, the use of
inheritance requires us to know, understand, and modify its internals. For instance, if
we model MarginAccount as a subclass of an Account type, new variations of margin
accounts would require solutions that either imply modifying the MarginAccount class
or creating new subclasses, which are both intrusive on the implementation of existing
system components. Even worse, after a MarginAccount type is created, a future
removal of such an asset from the business domain, or simply a modification of its
features, cannot be easily reflected on the system implementation without triggering
changes to all parts of the system in which MarginAccount participates.

On the other hand, with clientship, interactions become "hard-wired" in the code
that implements the participating objects, making it difficult to change or introduce
new interactions without having to change the implementation of the objects as well.
Even worse, because such changes may result in new interfaces for the participating
objects, a cascade of changes throughout the implementation of the system may well
be triggered to account for the other interactions in which the objects participate. For
instance, “hard-wiring” in an operation BuyStock of a StockOrder object the
conditions (guards) under which a specific stock order for a margin account is enabled
would lead to a system structure in which extensions or modifications on the code that
implements the operation and its clients would be required in order to reflect new
trading conditions for the account.

Hence, from the evolution point of view, volatile business requirements or assets
such as Margin Trading should be modelled explicitly outside the classes and
operations that model the basic business entities such as Customer, Account, Deposit
or BuyStock, so they can be evolved independently of those entities. In other words,
the desired separation of concerns must be available right from the earlier, more
abstract system models that result from traditional analysis techniques, and carried
through to the implementation level. Coordination contracts and their deployment
patterns provide exactly this ability by supporting a clear separation of computation



Lecture Notes in Computer Science 5

from interaction, allowing the coordination aspects to be externalized and handled
explicitly as first-class citizens.

3 Coordination Contracts

In general terms, a coordination contract is a connection that is established between
a group of objects (participants). Through the contract, rules and constraints are
superposed on the behavior of the participants, which determines a specific form of
interaction. From a static point of view, a contract defines what in the UML is known
as an association class. However, the way interaction is established between the
participants is more powerful than what can be achieved within the UML and similar
OO languages because it relies on the mechanism of superposition as developed for
parallel program design [11]. When a call is made from a client object to a supplier
object, the contract “intercepts” the call and superposes the forms of behavior it
prescribes. In order to provide the required levels of “pluggability”, neither the client,
nor any other object in the system, may know what kind of coordination is being
superposed. To achieve this “black box” view of system components, a contract
design pattern was developed as presented in [4, 9].

Coordination contracts are currently supported by a specification language called
Oblog [14], but the underlying technology is independent of the language in the sense
that the semantic primitive and the design pattern can be used in the context of other
modeling languages and methods. Using the Oblog notation, a coordination contract is
defined as follows:

contract class <name>
participants <list of partners>
constraints <the invariant the partners should satisfy>
attributes
operations
coordination
end class

A contract consists of a collection of role classes that identify the types of objects
that can be partners in the contract, constraints that represent invariants defining in
which conditions instances from the participating classes may be related by the
contract, attributes and operations private to the contract, and the prescription of the
coordination effects that will be superposed on the partners.

Coordination is prescribed through a number of rules of the form:
<name> when <trigger>

with <condition>

do <set of actions>

The name of the rule identifies a particular form of coordination; it identifies a
point of “rendez-vous” in which the participants have to synchronize their behavior.
The names themselves are used for managing the interference between different
contracts that may be active in the same state as discussed further below.

For each rule, the condition under “when” identifies the trigger that prompts the
contract to become active and coordinate the behavior of the participants. The trigger



Lecture Notes in Computer Science 6

can be a condition on the state of the participants, a request for a particular service, or
an event on one of the participants. Several trigger conditions can be placed in the
“when” clause using the keyword “AND”. If one of such conditions is not satisfied,
the contract is considered as being “inactive” and, as a result, the participants progress
independently of the reaction specified in the rule. This mechanism provides the
ability for controlling which of the contracts imposed on a component will be
responsible for coordinating it, thus allowing for dynamic configuration of the
component behavior.

The “do” part of each rule identifies a synchronization set of actions of the partners
and some of the contract’s own actions. This set is required to be executed atomically
in the sense that if the execution of any of its actions fails, the execution of the rule
itself fails.

When the trigger corresponds to the call for an operation of one of the partners,
three types of actions may be superposed on the execution of the operation:

• before actions: to be performed before the operation
• replace action: to be performed instead of the operation (alternative)
• after actions: to be performed after the operation

In the case in which an object participates in multiple contracts with the same trigger,
the sequence of execution for the before, replace and after clauses is shown in Figure
1. It should be noted that the semantics of contracts allows for only one “replace”
clause to be executed, thus preventing the undesirable situation of having two
alternative actions for the same trigger. Furthermore, any such replacement action

Fig.1. Execution of before, replace and after

must adhere to whatever specification clauses apply to the operation (e.g., contracts in
the sense of [13] specifying pre- and post-conditions). This ensures that the
functionality of the original operation, as advertised through its specification, is
preserved.

Each synchronisation set is guarded by the conjunction of the guards of the
individual actions together with the conditions included in the "with" clause.
Therefore, the “with” clause puts further constraints on the execution of the actions
involved in the interaction. If any condition under the “with” clause is not satisfied,
the synchronisation set fails and none of its actions is executed.

before before

replace

*->> x()

C1 C2

after after



Lecture Notes in Computer Science 7

For a more detailed description of coordination contracts and the technology that
puts them in practice, the reader is urged to consult [2, 3, 4, 9]. In what follows, we
present an example from the Stock Trading application domain to illustrate how
contracts can be used for building systems that support evolving business strategies.

4 Contract-based solutions for Stock Trading

In order to illustrate the points made in the previous sections, consider the simple
object architecture of Figure 2 that represents a stock trading subsystem with
coordination contracts established between customers and stock orders. In a client-
server architecture, Figure 2 represents some of the objects that constitute what we
may call a “customer session” existing on the server side for each customer logging on
the client side. Note that the architecture of Figure 2 is only an adaptation of a real-
life architecture made in order to illustrate the use of contracts. Therefore, it omits
details irrelevant to contracts like support for performance optimization.

Fig. 2. Customer-session server objects of a contract-based stock trading subsystem

The functionality of the classes of objects involved is straightforward. The
CustomerHandler is responsible for communicating with the client side and retrieving
the required resources from the various Databases (DBs). A Customer object
represents the customer logging on the trading system, and maintains the list of

Stocks
DB

Accounts DB

Customers DB

: Resource may be in
different address space

1

cspl: CustomerStock
Portfolio

List

c:Customer

Customers
StockPortfolio DB

1
ch:Customer

Handler

Contracts

order:StockOrder

StockOrders
System
Manager

ct:Contract
Factory

al:AccountList



Lecture Notes in Computer Science 8

Accounts and the list of the StocksPortfolio for the Customer. A StockOrder object is
created at the back-end to model the order created by the actor at the front-end. A
typical StockOrder object may contain attributes such as orderNumber, StockSymbol,
desiredPrice, quantity and so on, which model the stock orders taking place in the
business domain.

The object can communicate with a StockOrdersSystemManager that commits
transactions or updates DBs according to the system architecture. Notice that it is also
possible to use contracts to regulate such communications but presenting such
contracts in any meaningful level of detail is not in the scope of this paper.

A ContractFactory is an optional object for creating the contracts in place for a
particular Customer and a particular StockOrder. We are currently working on a
configuration language for contracts that will address issues like that but its
description is, again, outside the scope of this paper. Our concern is to show how, by
using contracts, volatile interactions between objects can be independently modeled
and implemented, thus providing the opportunity for building systems that that can be
easily modified.

Consider the scenario in which a client wants to buy a number of Stocks using the
concept of a Margin Account. After the StockOrder is created (both at the front and
back-end) the order is pre-submitted to the system so that the conditions required for
the order to be valid can be checked. For instance, as described before, it is necessary
to check whether the funds in the customer’s account satisfy the conditions for Margin
Trading and act accordingly, either accepting or rejecting the order. The following
contract between a Customer and a StockOrder, models the business rules related to a
MarginAccount trading.

contract MarginAccountTrading
participants
c:Customer;
order:StockOrder;

attributes int MarginLimit=30000,MinimumBalance=60000
coordination
marginTrading:
when*->order.Buy(accountNumber,stockSymbol,quantity,StockPrice)
AND (c.getAccount(accountNumber).getBalance()>=MinimumBalance)
with (c.getAccount(accountNumber).getBalance()+MarginLimit

>=(quantity*StockPrice+MinimumBalance))
replace{

order.Buy(accountNumber,stockSymbol,quantity,StockPrice);
};

end contract //MarginAccountTrading

The contract models the characteristics of a MarginAccount by including private
attributes such as MarginLimit and MinimumBalance. In a traditional OO approach, a
MarginAccount concept would be considered as a special type of Account. However,
this account is more related to trading rules than to the usual core business domain
entity Account. In other words, from the evolution point of view, it makes more sense
to model the functionality of the system by considering the business concept of a
MarginAccount as a trading type rather than as a core business entity. The use of



Lecture Notes in Computer Science 9

coordination contracts dispenses the use of inheritance for modeling situations like
these, thus avoiding the problems that we mentioned when new concepts are added to
that business entity. Instead, new attributes or behavior can be superposed
dynamically on the corresponding objects through relevant contracts as illustrated
above. At the same time, the previous contract provides another important advantage:
the externalization of the business rules that regulate MarginTrading. In other words,
the volatile business rules that determine the conditions under which MarginTrading is
allowed, even if they are different for specific customers or orders, can be modeled
right from the analysis phases and implemented in a way that can be changed without
affecting the functionality of the rest of the system. For instance, if a strategic
decision requires new rules to be related to MarginTrading, a new contract can be
inserted to the system in a “plug and play” mode to support this decision without
having to “touch” the basic objects that compose the system.

Consider now the case in which the trading firm decides to introduce a new type of
trading in order to attract new customers. In fact, this was the case of e-stock trading
firms such as Charles Schwab [15] that introduced the notion of Discounter Account
trading, a type of trading with a very low fee. In Discounter Account trading, the
customer is required to have an account balance between a minimum and a maximum
amount, and the balance must be greater than the sum of the total price of stocks
ordered plus the minimum amount plus the trading fee. This new strategic type of
trading can very easily implemented and plugged to the system using a contract such
as the one below:

contract DiscounterTrading
participants
c:Customer;
order:StockOrder;

attributes int MinimumBalance=40000, MaximumBalance=70000;
double tradingFee=20;

operations String getMonth();
coordination
discounterTrading:
when*->>order.Buy(accountNumber,stockSymbol,quantity,StockPrice)
AND (c.getAccount(accountNumber).getBalance()>=MinimumBalance

&& getAccount(accountNumber).getBalance()<=MaximumBalance
&& getMonth()=="June")

with (c.getAccount(accountNumber).getBalance()
>=(quantity*StockPrice+MinimumBalance+tradingFee)

replace{
order.Buy(accountNumber,stockSymbol,quantity,StockPrice);
};

end contract //DiscounterTrading

Notice that we may configure the contract to be active only when the month is, for
instance, June. This kind or configuration allows for implementing short-term or long-
term strategies corresponding to decisions occurring at the level of business
requirements. Clearly, similar contracts can be specified for FlexibleTrading,
UpperQuantityLimitTrading or any other type of trading the management would like
to introduce in order to support the goals of a new business strategy.



Lecture Notes in Computer Science 10

Apart from the previous examples, there is another capability of contracts that is
interesting to discuss: to have state conditions as triggers. Consider, independently of
the architecture of Figure 2, the following contract that may be part of an “intelligent”
stock trading system. The contract performs an automatic Buy action for a
Customer’s Account when the price of a Stock is greater than a buying threshold.
Naturally, similar “intelligent” contracts may be specified for other business rules such
as “Selling High”. Such contracts, which may be specified directly by the customer or
a trader, may allow companies to implement different management decisions, reduce
costs and attract new customers.

contract BuyLowContract
participants stock: Stock; account: Account;
//other necessary system participants

attributes double BuyMargin =0.50, int quantity=2000;
coordination
BuyLow:
when ?(stock.getLastPrice()-stock.getPrice()> BuyMargin)
do {
StockOrder order=new StockOrder(ordernumber, stock, quantity, lastStockPrice);
order.Buy(account.number, stock.stockSymbol, quantity, order.Price);
};

end contract

The nature of the triggers that can be used in coordination rules depends,
ultimately, of the languages and platforms in which system components are
programmed and deployed. As already mentioned, coordination technologies are,
essentially, language and platform independent in the sense that the underlying
principles like coordination and superposition are “universal”. However the degree of
coordination that can be achieved will always depend on the mechanisms that are
offered for components to interact, for error recovery, for transaction management,
etc.

4 Concluding Remarks

In today’s global and highly competitive business environments, to the question of
whether technology is forming business or vice-versa, organizations are replying by
integrating their business and IT strategies [5], thus using technology to do business.
Online business and virtual organizations is the trend as E-commerce numbers are
increasing and the emerging wireless data technologies are fuelling the creation of
new business opportunities. Flexibility, innovation and change have become critical
success factors for every business organization. Business strategies have now, more
and more, a short-term time horizon and, for the first time, can be put in practice by
information systems alone (strategic information systems). As a consequence, there is
an increasing pressure for building software systems that are dynamically
reconfigurable and adaptive to changes imposed either by technology innovation or
new business needs.



Lecture Notes in Computer Science 11

In this paper, we presented the technologies that, in our opinion, and from the
experience that we have gathered in the financial and telecommunications sectors, can
open the way to a new approach to building software systems that addresses the
dynamics of business strategies. We showed how a modeling primitive, named
coordination contract, can put in practice to structure software systems into two layers:
The computation layer, consisting of all static components that do not encapsulate any
business logic and do not evolve over large periods of time; and the coordination
layer, consisting of those components that describe the business logic and therefore
are subject to evolution. In other words, our approach promotes the idea of building
systems using libraries of “stable” components and “strategic evolving” components.
Borrowing examples from the stock-trading business domain, we showed how such
system structuring and component libraries can assist management and marketing
teams to put in practice different kind of strategies, aggressive or defensive, short term
or long term, and so on.

We are also convinced that there are a large number of application domains in
which contracts can be applied in order to support software evolution imposed by such
strategic decisions. However, there is no doubt that there is a lot to be done before
these technologies can find their way into the business world as effective modeling
and development solutions. Therefore, we are currently working on different aspects
of the development methodology associated with coordination contracts, namely in
what concerns distribution, configuration, and the modeling of higher level
requirements normally associated with policies.

Acknowledgements

This work was partially supported by Fundação para a Ciência e Tecnologia through
project POSI/32717/00 (FAST—Formal Approach to Software Architecture).
We would also like to thank João Pereira for the numerous discussions and comments
on the implementation of stock-trading systems.

References

1. L.F.Andrade and J.L.Fiadeiro, “Coordination Technologies for Managing Information
System Evolution", in Proc. CAISE’01, A.Geppert (ed), LNCS, Springer-Verlag 2001, in
print.

2. L.F.Andrade and J.L.Fiadeiro, "Interconnecting Objects via Contracts", in UML'99 –
Beyond the Standard, R.France and B.Rumpe (eds), LNCS 1723, Springer Verlag 1999,
566-583.

3. L.F.Andrade and J.L.Fiadeiro, “Coordination: the Evolutionary Dimension", in
Technology of Object-Oriented Languages and Systems – TOOLS 38, W.Pree (ed), IEEE
Computer Society Press 2001, 136-147.

4. L.F.Andrade, J.L.Fiadeiro, J.Gouveia, A.Lopes and M.Wermelinger, "Patterns for
Coordination", in COORDINATION'00, G.Catalin-Roman and A.Porto (eds), LNCS
1906, Springer-Verlag 2000, 317-322.



Lecture Notes in Computer Science 12

5. M.J.Earl: “An Organizational Approach to IS Strategy-Making”, in Information
Management: The Organizational Dimension, M. J. Earl (ed.) Oxford University Press,
1998.

6. P.Finger, "Component-Based Frameworks for E-Commerce", Communications of the
ACM 43(10), 2000, 61-66.

7. The Financial Times Survey. Stock and Derivatives Exchanges. Friday 31 March 2000.
8. D.Gelernter and N.Carriero, "Coordination Languages and their Significance",

Communications ACM 35, 2, pp. 97-107, 1992.
9. J.Gouveia, G.Koutsoukos, L.Andrade and J.L.Fiadeiro, “Tool Support for Coordination-

Based Software Evolution", in Technology of Object-Oriented Languages and Systems –
TOOLS 38, W.Pree (ed), IEEE Computer Society Press 2001, 184-196.

10. M.Hammer and J.Champey. Reengineering The Corporation: A Manifesto for Business
Revolution. Nicholas Brealey Publishing, 1998.

11. S.Katz, "A Superimposition Control Construct for Distributed Systems", in ACM
TOPLAS 15, 1993 337-356

12. G.Koutsoukos, J.Gouveia, L.Andrade and J.L.Fiadeiro, “Managing evolution in
Telecommunications Systems”, submitted, accessible at
http://www.fiadeiro.org/jose/papers

13. B.Meyer, "Applying Design by Contract", in IEEE Computer, 1992, 40-51.
14. The Oblog Corporation, “The Oblog Specification Language”,

http://www.oblog.com/tech/spec.html
15. Charles Schwab web site, http://www.schwab-worldwide.com


