
Managing Evolution in Telecommunication Systems

G.Koutsoukos*, J.Gouveia*, L.Andrade*, J.L. Fiadeiro**

*Oblog Software S.A
Alameda António Sérgio 7-1ºA,

2795 Linda-a-Velha,PORTUGAL
{gkoutsoukos,jgouveia,landrade}@oblog.pt

**Department of Informatics
Faculty of Sciences,University of Lisbon

Campo Grande, 1700 Lisboa, PORTUGAL
jose@fiadeiro.org

Keywords: Component-based frameworks, Coordination, Evolution, Telecommunication
Systems, Object Oriented Design, Reconfigurability, Scalability, Wireless Application Protocols

Abstract: The recent advances in telecommunication technology, namely the wireless
networks and the Internet, along with the competition of network operators for offering
advanced and different services, are putting increasing pressure for building
telecommunication software systems that are adaptive to new requirements and easily
reconfigurable, even in run time. We show how a new modelling primitive – coordination
contract – that we have developed and applied to other applications domains, can provide an
effective solution to this problem. We describe coordination contracts and demonstrate,
through several examples, how they can support the evolution of requirements of a
telecommunications transaction processing system and of the specifications of the Wireless
Application Protocol (WAP) Datagram layer. We also outline a development strategy based
on coordination contracts that leads to systems that are more agile in reacting to change.

1 INTRODUCTION

Technology and system requirements in the telecommunications domain are
changing very rapidly. Over the previous years, since the transition from analog to
digital communications, and from wired to wireless networks, different standards
and solutions have been adopted, implemented and modified, often to deal with new
and different business requirements. More and more, telecommunication network
operators strive to provide new advanced services in an attractive and usable way.
However, time-to-market is a business decision that can be severely conditioned by
the capacity of systems to accommodate changes quickly and with minimum impact
on the services already implemented. This challenge is often difficult to be met by
hardware-based systems because hardware cannot be easily modified and integrated.

On the other hand, thanks to the explosive growth of the Internet and the
emergence of wireless data technologies, we are witnessing a major shift from
hardware to software-based systems in this sector. This is because more and more
applications must process data and information, a task that is easier to be performed
on software. Therefore, it is not surprising that, due to their popularity in more
traditional software application domains, object-oriented development techniques,
such as the UML, and component-based frameworks like COM and CORBA, are
becoming a standard in the telecommunications software industry.

However, it is now widely accepted that, although OO techniques such as
inheritance and clientship make it easier to build systems, their support for evolution
in general, and the ability of systems to exhibit the agility required by the volatility
of business domains in particular, is quite limited. As explained in [1], [2], this is
because interactions that take place in the application domain, corresponding to the
services that the system is required to provide, are too often “hard-wired” in the code
that implements the participating objects, making it hard to change or establish new
interactions without having to change the implementation of the objects that model
the more basic and stable entities of the domain as well. Yet, the ability to change is
now much more important than the ability to create systems in the first place.
Change has become a first-class design goal and requires both functional and
technical architectures whose components can be added, modified, replaced and
reconfigured dynamically.

In this paper, we argue that the modelling primitive – coordination contracts –
that we presented in [1], [2], [3] for superposing coordination mechanisms over
existing objects can be applied to telecommunication systems in order to achieve
increased flexibility and agility in reacting to change. By borrowing concepts and
techniques from Reconfigurable Distributed Systems and Software Architectures,
coordination contracts provide the ability for interactions between objects to be
modelled as first-class entities and for changes that require a reconfiguration of such
interactions to be performed without having to change the objects involved.
Through several examples related to the modelling of Wireless Application
Protocols, we will give evidence on how coordination contracts can be used to
support typical changes that are required by different business needs or imposed by
the evolution of specifications.

2 COORDINATION CONTRACTS

In general terms, a coordination contract is a connection that is established
between a group of objects (participants), where rules and constraints are superposed
on the behaviour of the participants, which determines a specific form of interaction.
The way such an interaction is established between the partners is more powerful
than what can be achieved within the UML and similar OO languages because it
relies on the mechanism of superposition as developed for parallel and distributed
system design [5,7,10]. When a call is made from a client object to a supplier object,
the contract “intercepts” the call and superposes whatever forms of behaviour it
prescribes. In order to provide the required levels of pluggability, neither the client,
nor any other object in the system, needs to know what kind of coordination is being
superposed. To enable that, a contract design pattern, presented in [2,4,9], allows
coordination contracts to be superposed on given objects in a system to coordinate
their behaviour without having to modify the way the objects are implemented
(black box view).

Coordination contracts are currently supported by a specification language called
Oblog [11] but the underlying technology is independent of the language and is
being made available for other development platforms and environments. Using the
Oblog notation, a coordination contract is defined as follows:

contract class <name>
participants <list of partners>
constraints <the invariant the partners should satisfy>
attributes
operations
coordination <interaction with partners>
end class

A contract declares a collection of participants that identify the classes of objects
that can be partners in the contract, constraints that represent invariants defining the
conditions under which instances from these classes may become partners in a
contract instance, attributes and operations private to the contract, and the
coordination effects that will be superposed on the partners to manage their
interaction. Each interaction under a coordination rule is of the form:

<name> when <trigger>
with <condition>
do <set of actions>

The name of the interaction is used for establishing an overall coordination
among the various interactions and the contract’s own actions. The condition under
“when” establishes the trigger of the interaction. The trigger can be a condition on
the state of the participants, a request for a particular service, or a signal received by
one of the participants. Several conditions can be placed in the “when” clause using
the keyword “AND”. If one of such conditions is not satisfied, the contract is
considered as being “inactive” and, as a result, either another applicable contract
takes over or the original code of the trigger is executed. This mechanism provides
the ability for controlling which of the contracts imposed on a component will be
responsible for coordinating it.

The “do” clause identifies the reactions to be performed, usually in terms of
actions of the partners and some of the contract’s own actions. When the trigger
corresponds to the calling of an operation, three types of actions may be superposed
on the execution of the operation:

1. before action: to be performed before the operation
2. replace action: to be performed instead of the operation (alternative)
3. after action: to be performed after the operation

In the case in which an object participates in multiple contracts with the same
trigger, the sequence of execution for the different clauses is: all the “befores”, one
“replace”, all the “afters”. Notice that the semantics of contracts allow for only one
“replace” clause to be executed. The current implementation allows for a priority
hierarchy to be specified among the alternatives. Any operation offered as an
alternative in a “replace” clause is required to satisfy whatever properties have been
specified on the original operation, e.g. in terms of pre/post-conditions.

The actions that are executed as part of the “do” clause are called the
synchronisation set associated with the trigger. The semantics of contracts requires
that this set be executed atomically, guarded by the conjunction of the guards of the
individual actions together with the conditions included in the “with” clause.
Therefore, the “with” clause puts further constraints on the execution of the actions
involved in the interaction. If any condition under the “with” clause is not satisfied,
an exception is thrown and none of the actions in the synchronisation set is executed.

For a more detailed description of coordination contracts, the reader is urged to
consult [1,2,3]: the presentation of the mathematical semantics that we have
developed and the design pattern that we have used for implementing contracts are
out of the scope of this paper. In the next sections we focus instead on illustrating
the coordination role of contracts and present them as a means of structuring the
evolution of telecommunication systems.

3 SUPPORTING EVOLVING REQUIREMENTS

Consider the following specification of an account from a telephone service
provider (in a simplification of the full Oblog notation).

class Account body
attributes methods
object Charge
 tel_number: Integer; is {
 balance: Integer:=0; set balance:=
 charge_rate: Integer; Balance()+call_time*charge_rate;

operations }end
class end class
 *Create(client: Customer);
object
 ?Balance(): Integer; // function, returns balance
 Charge(call_time: Integer);

The main purpose of the class is, simply, to charge the account whenever a
phone-call ends. The other operations of the class are, also, self-explanatory

A second class can be defined with the purpose of modelling the phone calls that
each client makes. Because the operations specified here are used for illustrative
purposes only, they are limited to the ones that calculate the duration and determine
the end of a call.

class Call body
attributes methods
object FinishCall
 caller_number:Integer; // body of finish call detects end of call

operations CalculateCallTime
class // body-calculates the duration of call
 *Create(client: Customer); end class
object
 FinishCall();
 ?CalculateCallTime():Integer;

In this context, how can the customer’s account be charged as soon as the
phone-call ends? There are two possible scenarios, both related to the
implementation of the two components. Either the Account and Call components are
independent and are not aware of the existence of each other, in which case a third
component is needed that becomes responsible for detecting the end of the phone-
call, calculate the duration and perform the charge; or the Call class is responsible
for calling the Charge() method, for instance inside the FinishCall() method. It
should be clear that the latter is a “weak” implementation. Indeed, it is hardly the
role of a component that models phone-calls to charge an Account. However, such
implementations are often the case in real life applications and we will take this
possibility into account when showing how, in both cases, contracts provide a very
effective way to evolve the system without modifying the existing components.

In the first scenario, the best design decision is to have the following contract in
place of the mediating component:

contract class Traditional Charging
participants x : Account; y : Call;
constraints x.tel_number:=y.caller_number;
coordination
when *->>y.FinishCall();
after

local time: Integer:= y.CalculateCallTime();
x.Charge(time);

end class

The constraint specified on the participants ensures that the right account is
being charged for the call. The coordination clause specifies the reaction to be
performed when a call is finished: the duration of the call is determined and passed
on to the account for the corresponding charge to be performed.

Having such a contract coordinating the way calls are charged instead of placing
a direct invocation between the participating objects provides the functionality that
is required while offering the advantage that the mechanism that controls the
interaction between the given objects is modelled as a first-class entity and, hence,
can be evolved independently of the other two. For instance, consider the situation

in which the telephone provider decides to distinguish between two types of
customers and charge them according to different rules: VIP customers are charged
only after the call exceeds a specific number of seconds, whereas other customers
are charged for the whole duration of their phone-calls. In this scenario, all we need
to accommodate this new business rule is for the contracts that regulate the way VIP
customers are being charged to be replaced by an instance of the following new
contract:

contract class VIP_Charging
participants x : Account; y : Call;
attributes free_call_limit:Integer;
constraints x.tel_number:=y.caller_number;
coordination
when *->>y.FinishCall(); // *-> : any call triggers the rule
after

local time: Integer:= y.CalculateCallTime(); // local: a local variable
if (time> free_call_limit)

x.Charge(time - free_call_limit);
end class

Through the use of the design pattern that we developed for deploying contracts
[2,4,9], such a replacement can be performed without having to change the
implementations of the components involved. Hence, when business requirements
that are modelled through contracts change, the configuration of the system can be
evolved accordingly in a “plug and play” mode, i.e. without intruding on the
implementations of the components involved.

Notice that situations such as this one cannot be handled through conventional
OO techniques, namely through the use of inheritance. Firstly, inheritance does not
provide coordination as a first-class entity like contracts do, which means that
interactions have to be "coded" directly in the components in terms of feature
calling, and the implementation of the components to be changed to accommodate
the new requirements. Secondly, from the business point of view, the adaptations
that make sense may be required on classes other than the ones in which the
restrictions were implemented: in the example above, this is the case when it is the
type of client and not the type of account that determines the nature of the charges: it
is not the accounts that are VIPs and, hence, changes to the way customers are
charged should not lead to changes in accounts.

Consider now the second scenario in which the two components, Account and
Call, are aware of the existence of each other in the sense that each instance of a
Call has to invoke the Charge() method in order to perform the charging of the
customer’s account (possibly as soon as the call ends). In this scenario, evolving the
system to comply with the new requirement of having different charging schemes
for different kinds of customers is not possible without modifying the components.
For instance, consider the case in which inside FinishCall() there is a statement of
the form Account.Charge (CalculateCallTime). Clearly, it is not possible to change
the charging mechanism without changing the source code of either FinishCall() or
Charge(). However, a contract like the one below can achieve the required
functionality without having to modify the implementation of Call and Account.

contract class VIP_Charging_2
participants x : Account; y : Call;
attributes free_call_limit:Integer;
constraints x.tel_number:=y.caller_number;
coordination
when y->> x.Charge(time);
replace

if (time > free_call_limit){
local newtime: Integer:= time-free_call_limit;
x.Charge(newtime);

}
// implied “else” is void i.e. if time<free_call_time
// nothing is executed (it does not charge)

end class

Through the implementation that we have developed for contracts [2,4,9], the
previous scenario can be evolved to a more flexible solution that intercepts the direct
interaction between calls and accounts and superposes the new contract.

Many other similar situations could have been used to illustrate how
coordination contracts support evolution of requirements. For instance, different
charging rates may be defined for different duration of calls. In such a case,
contracts can offer a very flexible solution by deciding the charging rate and
coordinating the charging procedure. Due to space limitations we will not present an
example. However, we believe that the previous examples are enough to illustrate
how contacts can externalise the interactions between objects, making them explicit
in the conceptual model, and support compositional evolution of a
telecommunication transaction processing system with respect to the evolution of
business requirements.

4 THE WIRELESS DATAGRAM PROTOCOL

In this section, we make a more comprehensive account of the applicability of
coordination contracts in the “wireless domain” by analysing the problem of
supporting the evolution of port numbers and the evolution of wireless network
bearer types and services in the implementation of the Wireless Application Protocol
(WAP) Datagram Layer.

WAP is the latest attempt of the telecommunications industry to specify an
application framework and network protocols for wireless devices with the main
objective of bringing Internet content and advanced data services to digital cellular
phones and other wireless terminals. A detailed description of the WAP architecture
is presented in [12]. In general terms, the protocol layers are similar to the known
OSI/ISO layers. In the context of this paper, the important aspect of the WAP
architecture is that the WAP layers are designed to operate over a variety of different
bearer services, supported by the various network types. This is accomplished in the
layer referred to as the Wireless Datagram Protocol (WDP) [13].

WDP provides a common interface to the upper layers (Security, Session, and
Application) so that they are able to function independently of the underlying
wireless network. This is achieved by adapting the transport layer to specific

features of the underlying bearer. Therefore, the WAP layers architecture can, in
fact, be considered as a 3 layered architecture of the upper layers, the underlying
bearers and their interface (WDP). In general terms, WDP has to perform 3 tasks:
port addressing by assigning port numbers (identify the higher layer entity above
WDP), segmentation of datagrams and re-assembly of packets and error reporting.
Discussing the way WDP performs these tasks is out of the scope of this paper. The
reader can consult [13] for more details. Clearly, the list of supported bearers will
change over time with new bearer types and services being added as the wireless
market evolves (projection reached by WapForum in [12], pg 17). Moreover,
specifications are changing in order to improve the protocol. As a consequence,
relevant modifications to the implementation of the interface level (WDP) are
needed in order to continue offering transparent services to the upper layers of the
WAP stack. Therefore, WDP must be flexible enough to accommodate the changes
in the underlying level quickly and with minimum impact on the services already
implemented. In this section, we show how this flexibility can be achieved using the
contract based development methodology. As far as the evolution of bearers is
concerned, a generic architecture of our proposal is shown in Figure 1 below. In
Figure 1, the WDP Components correspond to the operations of the WDP layer that
are identical for all bearer services supported by WAP. This mainly means that they
are computationally identical. However, their conditions for execution are different
according to the underlying bearer. The WDP

Figure 1. Contracts, bearers and WDP

Components in Figure 1 are components that can be implemented as “black boxes”.
It is the responsibility of the contracts to coordinate the behaviour of such
components according to the specific requirements of a bearer service. When a new
bearer (type or service) is to be added to the ones already supported by WAP, new
contracts will be added to the system to support that bearer. As a result, the already
implemented WDP Components remain unchanged, thus allowing support for the
evolution of requirements and achieving software reuse.

Consider now the case in which the evolution of WAP specifications results in
new or even different specifications for WDP. For instance, the initial port numbers
were different from the ones of later versions. Clearly, such modifications affect the
already implemented parts of WDP that deal with port addressing. Consider the
(real) case in which, in the implementation of the port addressing operation of a
WAP Gateway (a part of the WAP network architecture that implements the

protocol), a component method called wdp_udp_open(), after receiving a WAP
service, assigns a port number to its port attribute using, inside its body, statements
of the following form (C notation):

if (strcmp(wap_service, "wsp") == 0) {
port = 9200;

} else if (strcmp(wap_service, "wsp/wtp") == 0) {
port = 9201;

// etc for all possible port numbers
} else {

error(0,"Illegal configuration",wap_service);
goto error; }

After performing the previous port number assignment – wdp_udp_open() – it
calls a method – udp_create_address(port) – of another component, providing as
argument the port number it has just assigned. Clearly, the previous code in which
port number assignment is “hard-wired” inside the body of a method has to be
rewritten in order to modify or include new port numbers. Still, if the code is
rewritten following the above logic, the same problems will occur in the case a new
specification for port numbers comes out. Therefore, from the evolution point of
view, code such as the one above is undesirable.

In order to deal with these problems, a solution based on the use of contracts is
proposed. Two objects, Port_Address and UDP_Config are the participants in a
Port_Assign contract. Port_Address has as attributes a wap_service and a port, and a
wdp_udp_open() operation that is supposed to provide the same functionality as the
original real-life wdp_udp_open() operation presented above. Port number
assignment is now performed in the coordination part of the contract. When the
udp_create_address(port) is called, the port number passed as argument to the
operation is defined in the Port_Assign contract. In that way, when new port
numbers have to be introduced, a new contract will be plugged to the system to
perform the updated port number assignment without affecting other parts of the
code.

contract class Port_Assign
participants x: Port_Address , y: UDP_Config;
constraints x.wap_service!=NULL;
coordination
when x ->>(y.udp_create_address(x.port))
before{

if x.wap_service == ‘wsp’;
x.port=9200;

//etc for all port numbers
end class

As already stated earlier, apart from port addressing, WDP has to provide
segmentation and re-assembly of datagrams in a bearer dependent way. A datagram
is a unit of information that consists of header fields and data fields. However, from
the segmentation point of view, a datagram can be considered as a sequence of bits
that is split into a number of packets being transmitted over the network. A reference
number is used for distinguishing between different datagrams. Moreover,
segmentation assigns headers to a packet containing the reference number for the
WDP packet, the total number of segments in the datagram, and a segment number.

From the evolution point of view, the issue in segmentation is that the resulting
packets must be of a size and format consistent with the underlying network service.

In a conventional design in which segmentation is implemented in different
components in a bearer dependent way, the required evolution would be difficult to
be achieved in a compositional way. However, contracts provide a very flexible
solution to the problem. Consider a design (Figure 2) in which a class Segmentation
defines a operation Segment(Datagram) to perform the segmentation of a datagram
into a number of packets. The Segmentation class and Segment are defined in such a
way that they provide the necessary computational functionality that is common for
all bearer types. All bearer specific features of segmentation, such as packet size,
encoding of packets and so on are modelled in contracts. Each contract corresponds
to a bearer service and is responsible for coordinating the segmentation operation
according to the underlying bearer requirements.

Figure 2. Contracts in Segmentation

For instance, GSM_Service_Segmentation could be the definition of a contract that
is superposed on the Segmentation operation in order to support a GSM bearer
service. The contract sets the maximum packet size for segmentation to be equal to
the size required by the GSM Service. Moreover, the contract defines some
operations for encoding the packet headers according to the particular GSM Service
requirements. Naturally, additional operations or actions may be required based on
more “low-level” design decisions.

contract class GSM_Service_Segmentation
constants gsm_N :Integer // number of bits per packet in the GSM service
participants x: Segmentation;
operations
GSM_Service_Ref_Encod(int);
// other operations

coordination
when *->>x.Segment(Datagram) AND NETWORK.bearer_type:=”GSM_Service”;
with Datagram.data !=NULL;
before

x.Size = gsm_N;
…

replace
… // possibly replace the whole Segment() by an operation defined in a contract.

after
for (int i=0, i<size (x.List_Packets), i++){

x.List_Packets[i].ref_number=
GSM_Service_Ref_Encod(x.List_Packets[i].ref_number);

}
// similarly for MaxFragment, Sequence_number

end class

 When a new service is added to the protocol, a new contract will be added to the
system in a “plug and play” mode to support that service. This allows for the
Segmentation component already defined and all client components using
Segmentation to remain unchanged. These features of not “breaking” the client and
dynamically selecting alternatives of behaviour are some of the advantages of the
contract-based design over the use of design patterns such as the Strategy or the
Bridge [8] that could also be applied in order to provide a similar functionality. It is
also important to note that the condition specified by the keyword AND under the
“when” clause checks whether the network service is the correct one. This is
accomplished by using a NETWORK global component, defined only for illustrative
purposes. If the condition is false, it may be possible for another contract, imposed
on Segmentation and concerning another network type, to be executed. In that way,
support for dynamic network reconfiguration may be achieved. This is an
application of contracts that we intend to further investigate in the future.

As far as the re-assembly case is concerned, the use of contracts for supporting
the evolution of bearers is not so straightforward and, due to space limitations, we
will not present an example. In what follows, we briefly discuss how contracts can
be applied to support the error reporting mechanism of WAP.

Processing errors can happen when WDP datagrams are sent from a WDP
provider to another. For instance, there may be no application listening to the
destination port, or the receiver may not have enough buffer space to receive a large
message. Routines report such errors by generating error messages of a specific
format. Discussing the error reporting mechanism of WAP is out of the scope of this
paper. The reader can consult [14] for more details. The relationship between the
error messages’ format and the underlying bearer is specified in the Address
Information field. The address information field consists of Address Type, Address
Length and Address Data elements. Address Type specifies the type of the
underlying bearer. If the Address Type is GSM, the Address Data must be coded
using the semi-octet representation defined in GSM 03.40 [6]. Similar requirements
are specified in [14] for all the different bearers supported by WAP. This indicates
that different bearer types have different message formats. Building the Information
field format inside the routine in a bearer dependent way would lead to interactions
that are “hard-wired” in the code making it difficult to introduce changes related to
the evolution of bearers. Therefore, in order to support the evolution of bearers,
these elements of Error messages have to be generated in a bearer independent way.
The following example illustrates how contracts provide a convenient way to
achieve this.

A class of objects, Err_Msg, may be defined to model the Error Messages and
their attributes, according to the WCMP specification [14]. A class Address_Info, is
responsible for generating, using a generate_Address_Info() operation, the

Address_Information fields i.e Addr_type, Addr_Length, Addr_Data, and assigning
their values to the corresponding attributes of Err_Msg. In order for having these
fields generated in a bearer independent way, a contract, GSM_Addr_Information, is
defined. The contract is related to the GSM bearer type case. A similar contract
would be defined for any other wireless network. The role of the contract(s) is to
generate the Address Information of messages according to the bearer requirements.

contract class GSM_Addr_Information
participants x: Address_Info;
operations
class
GSM_0340_Encod(Datagram);//methods to perform Encoding according to GSM 03.40
GSM_Addr_Length_Encod(Datagram);

coordination
when *->>x.generate_Address_Info(Err_Msg, Datagram) AND NETWORK.bearer_type:=”GSM”;
before

x.Addr_type := “GSM”;
x.Addr_Length := GSM_Addr_Length_Encod(Datagram);
x.Addr_Data := GSM_0340_Encod(Datagram);

end class

Generate_Address_Info provides a uniform interface for all routines in the
system. A routine, after encountering an error, calls generate_Address_Info to build
the Address Information Field of the message. How this field will be built is co-
ordinated by the contract according to the underlying bearer. The contract intercepts
the call and ensures that the Address Information field will be built according to
bearer requirements. As a result, when new bearer types are added to WAP, new
contracts will be added to support them without affecting the functionality of the rest
of the system. Moreover, as explained in the segmentation case, contract-based
designs provide a number of advantages over existing design patterns. Due to space
limitations we do not discuss such issues in more detail. We intend, however, to do
so in future papers.

5 CONCLUDING REMARKS

The telecommunications sector is being governed by the expeditious growth of
two networking technologies: the wireless data and the Internet. This growth has
fuelled the creation of new and exciting information services and resulted in a major
shift from hardware to software as far as the implementation of telecommunication
systems is concerned. However, under this increasing pressure for new sophisticated
services, and with the frequent adoption of new standards, software development in
telecommunications cannot rely solely on traditional OO development techniques
such as inheritance and clientship. We believe that the only hope for
telecommunication organisations to be able to face the challenges of the fast market
and technology evolution is to follow the emerging trend in software analysis and
design based on predefined frameworks of skeletal applications, components, and
design patterns that can be easily customized and integrated.

In this paper, we proposed the contract-based development methodology
described in [1], [2], [3] as a discipline that can be applied when developing
telecommunications systems in order to support the evolution of system
requirements. We supported our view by presenting examples in which contracts
provide a compositional structuring mechanism with respect to changes occurring
due to the evolution of requirements in a telecommunications transaction-processing
system. We also showed that contracts can be applied to the Port addressing,
Segmentation and Error reporting operations of the Wireless Application Protocol
Datagram Layer in order to accommodate changes imposed by the evolution of the
protocol’s specifications. We did not attempt, however, to provide “low level”
designs and, therefore, our examples lack implementation details. Based on our
experience in applying the contract-based methodology in other domains, we believe
that, by refining these designs to real implementations, increased levels of flexibility
and reuse will be achieved.

We are also certain that these methods can be applied to other areas in the
telecommunications domain. A good basis for meeting this opportunity can be
provided by adopting a development strategy based on the following steps:

1. Decompose the system into parts (the WAP already consists of multiple
layers but further decomposition into smaller parts is possible).

2. Determine evolution critical parts (the evolution of bearers in WAP implies
that WDP is an evolution critical part).

3. Obtain a thorough understanding of the domain of the specific problem
being solved.

4. Model individual components as domain objects and identify operations that
are “stable” (computationally identical).

5. Coordinate the joint behaviour of the previous objects through the
superposition of contracts.

Clearly, additional issues need to be addressed before these steps can be
effectively applied. For instance, one could ask how we can determine the evolution
critical parts, and how we can identify the “stable” operations in a system. Naturally,
these questions can only be answered by experts in the problem domain. We are
currently investigating criteria that would assist such experts in providing answers to
the previous questions. Moreover, because performance is a critical concern for
telecommunication applications, we are also evaluating the impact that the design
pattern, presented in [2], [4], [9], as a way to implement contracts, has on the
performance of systems.

6 ACKNOWLEDGEMENTS

Some of the ideas presented in this paper concerning the use of coordination
contracts in telecommunications were developed as part of the first author’s MSc
thesis at King’s College, University of London, September 2000. The first author
wishes to acknowledge Prof. Tom Maibaum for his valuable guidance, comments
and moral support

7 REFERENCES

[1] L.F Andrade and J.L Fiadeiro. Evolution by Contract. Position paper presented at the
ECOOP'00 Workshop on Object-Oriented Architectural Evolution.

[2] L.F Andrade and J. L Fiadeiro. Interconnecting Objects via Contracts. In UML’99-
Beyond the Standard, R. France and B. Rumpe(eds), LNCS 1723, Spinger-Verlag , pp.
566-583,1999.

[3] L.F Andrade and J. L Fiadeiro. Coordination: the evolutionary dimension. in Proc.
TOOLS Europe 2001, Prentice-Hall, in print.

[4] L.Andrade, J.Fiadeiro, J.Gouveia, A.Lopes and M.Wermelinger. Patterns for
Coordination. In Coodination Languages and Models, G.Catalin-Roman and A.Porto
(eds), LNCS 1906, pp. 317-322, Springer-Verlag 2000.

[5] K.Chandy and J.Misra. Parallel Program Design – A Foundation, Addison-Wesley,
1988.

[6] ETSI (European Telecommunication Standardisation Institute) European Digital
Cellular Telecommunication Systems (phase 2+). Technical realisation of the Short
Message Service (SMS) Point-to-Point (P) (GSM 03.40 version 7.1.0 Release 1998.

[7] N.Francez and I.Forman. Interacting Processes, Addison-Wesley 1996.
[8] E. Gamma, R.Helm, R. Johnson and J. Vlissidis. Design Patterns: Elements of

Reusable Object Oriented Software, Addison Wesley, 1995.
[9] J.Gouveia, G.Koutsoukos, L.Andrade and J.Fiadeiro. Tool support for coordination

based evolution. In Proc. TOOLS Europe 2001, Prentice-Hall, in print.
[10] S.Katz. A Superimposition Control Construct for Distributed Systems. In ACM

TOPLAS 15(2), 1993, 337-356.
[11] The Oblog Corporation. “The Oblog Specification Language”, http://

www.oblog.com/tech/spec.html.
[12] The WapForum. “The WAP Architecture Specification”,Version 30th April 1998

http://www.wapforum.org/what/technical.htm.
[13] The WapForum. “The WAP Wireless Datagram Protocol Specification”, Version 19th

Feb 2000, http://www.wapforum.org/what/technical.htm.
[14] The WapForum. “TheWireless Control Message Protocol”, Version 19th Feb. 2000

http://www.wapforum.org/what/technical.htm.

